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This poster reports the results of two 
experiments on sawtooth stabilization

• The first experiment used "2nd harmonic, H-minority" heating to 
create a fast-ion tail population to stabilize the sawteeth.

• The objective of the second experiment was to reproduce on 
DIII-D the NBI sawtooth stabilization seen on TFTR.

• The poster will also discuss the following sawtooth issues:

Heat pulse propagation -
Ion, electron and "ballistic" heat pulses.

Sawtooth precursor structure -
kink-ballooning and coupled kink-ballooning.

• Where appropriate, results will be compared with similar data 
from TFTR.
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NBI heating was used 
throughout for 
diagnostic purposes; 
a high power interval 
was added between 
3.9-5.0 sec.

The Experiments were carried out as follows:

• In both cases q(0) dropped significantly below one prior to the crashes.

The sawtooth period 
was increased to as 
much as 250 msec 
with either NBI or 
ICRF.

Nominal 2nd 
harmonic H-minority 
ICRF heating was 
used to attempt 
sawtooth stabilization.
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ICRF Sawtooth Stabilization Results

• ICRF power was limited to about 1.2 MW, avoidance of H-mode 
was difficult (interfered with RF coupling).

TFTR, with twice the plasma volume, needed about 2.5-3MW.

• Sawtooth periods as long as 250 msec were made.

• Evidence for fast ion tail in observation of TAE or EPM's*.

• Some of the results could also be interpreted as evidence for 
4th harmonic heating of D-beam ions.

• Stabilization effectiveness very sensitive to resonance location.
*S. Bernabei, Invited Paper ***
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At sawtooth crash, MSE q(0) rises to unity;
in contrast to MSE measurements on TFTR
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q(0) drops as low as 
0.8, but continues 
dropping throughout 
the "sawtooth-stable" 
period.

q(0) drops much 
lower than usually 
observed on DIII-D.

DIII-D
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Weak, rotating precursor visible, final
growth of island must be very fast.

Approximate q=1 radius

No ballooning 
character to 
precursor

Heat pulse still 
appears strongly 
ballistic*; possibility 
of plasma motion 
must be investigated.
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*Fredrickson, et al, Phys. Rev. Lett. 65 (1990) 2869.
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"TAE" modes show up just before sawtooth

crash indicating presence of fast ion tail.

Identification as "TAE" 
or "EPM"* not clear at 
this point;  frequency 
drop could be "chirping" 
or density rise.

96478

H-modes were
often triggered at 
sawtooth crash.

ELM's affected ICRF 
coupling, edge density 
rise cut-off ECE 
signal.

*S. Bernabei, Invited Talk 
  Fredrickson, Nucl. Fusion 35 (1995) 1457.

DIII-D
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Best stabilization with heating
slightly on high field side.
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Sawtooth period 
was very sensitive 
to ICRF resonance 
location.

Beam voltage and 
power scans were 
also done to 
investigate 
possibility of 4th 
harmonic D heating 
of beam ions

≈ +7 cm

≈ +5 cm

≈ +3 cm

DIII-D
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NBI Sawtooth Stabilization Results

• Above NBI power of about 9 MW, avoidance of H-mode 
 was difficult, broader Te, pressure, raised q(0)>1.

• Sawtooth periods as long as 250 msec were made.

• q(0) dropped to near 0.9 before sawtooth, period lengthening
 could be due to slower current diffusion (beam/bootstrap 
 currents).

• Detailed comparisons with theoretical models will follow more 
 careful analysis of the data.

• Future experiments might reduce elongation, move to limiter to
 more closely simulate TFTR conditions.



Sawtooth period increases with Beam Power
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MSE q(0)  jumps to 
unity at each crash.

q(0) drops to nearly 
0.9 in some cases.

Drop is slower at 
higher power; 
sawtooth period 
may reflect slower 
current diffusion.
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Increase in period is roughly Linear with NBI

• Eventually, H-
mode clouds the 
issue, broadens 
current profile, raises 
q(0)≈1.
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Sawtooth Precursor has "Ballooning-Kink"  
structure as found on TFTR*

Bandwidth not 
adequate to see 
moderate-n 
ballooning modes.

Main island growth 
occurs late in 
precursor phase, 
as on TFTR.

βn ≈ 1.2 vs. 0.85 
for ICRF.
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island growth kink-ballooning

*Park, et al., Phys. Fluids B 3 (1991) 507.
  Fredrickson, et al., Phys. Rev. Lett. 65 (1990) 2869.

50
DIII-D
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Strong Ballistic Effect in Te Heat Pulse
DIII-D• Experimental heat pulses compared to χpb simulation.



Soft x-ray cameras show ballistic
heat pulse is not from plasma movement
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DIII-D• Soft x-ray chords integrate emmission from outside tangency radius,
should continue to rise after ECE stops.
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Weaker ballistic effect seen at
 lower β, smaller q=1 radius
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The ballistic effect 
has been assumed to 
result from stochastic 
fields caused by β-
induced mode 
coupling.

The scaling with β in 
TFTR is not clear, 
however.

DIII-D
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1-fluid transport code used for simulations

t = 0, +50 µsec

t = +50 µsec

simulation

data
Simulation fits Te 
profile and models
sawtooth crash 
reasonably well.

The mechanism for 
the ballistic effect 
rounds the 
reconnected profile 
very quickly.

DIII-D
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Simulation uses analytic expressions for
χ, heating and density profiles

Future simulations 
will improve fit to χ, 
explore non-linear 
and explicitly ballistic 
transport models.

TRANSP

Simulation
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Ion Temperature measurements at 2 msec
intervals see heat pulse
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Heat pulses aren't
exactly ballistic;

more analysis is 
necessary to 
understand them.

DIII-D
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Comparison with TFTR Sawteeth

• Many features of the sawteeth and subsequent heat pulse 
propagation appear similar between TFTR and DIII-D.

• The most important difference is in the behavior of q
during the sawtooth crash.

• The sawtooth precursor on DIII-D shows much of the same
behavior as was seen on TFTR: the outward n=1 ballooning, 
sometimes rapid final growth of the island.

• The higher bandwidth ECE diagnostics on TFTR have also
seen moderate n ballooning modes in sawtooth-like events.

• The "ballistic" component of the heat pulse seems relatively
much stronger on DIII-D; the origin of this effect is still unknown.
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Finite pressure modifies the (1/1) tearing 
mode, causing a bulge beyond q=1 radius

PRINCETON   PLASMA 
PHYSICS LABORATORY

PPPL

• Island growth in this case is more linear; 
the ballistic effect is weaker.

TFTR

76650
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Ballistic effect generally weaker on TFTR

• Sawtooth precursor island growth often non-linear

constant island size rapid growth starts

TFTR

76642
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Ballistic effect at low power on DIII-D is
comparable to high power on TFTR
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Toroidally localized ballooning precursors
have been observed prior to "sawteeth"

• Collapse is slow, very weak if any ballistic contribution.
TFTR
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Summary

• Some stabilization of sawteeth was observed on DIII-D with
1.2 MW of ICRF power, the sawtooth period was lengthened
during NBI by a comparable amount.

• Many features of the sawteeth and subsequent heat pulse 
propagation appear similar between TFTR and DIII-D.

• The most important difference is in the behavior of q
during the sawtooth crash.

• Moderate n ballooning modes have been observed in sawtooth-
like events on TFTR.

• The "ballistic" component of the heat pulse seems relatively
much stronger on DIII-D; the origin of this effect is still unknown.


